Time course and permeation of synaptic AMPA receptors in cochlear nuclear neurons correlate with input.

نویسندگان

  • S M Gardner
  • L O Trussell
  • D Oertel
چکیده

AMPA receptors mediate rapid glutamatergic synaptic transmission. In the mammalian cochlear nuclei, neurons receive excitatory input from either auditory nerve fibers, parallel fibers, or both fiber systems. The functional correlates of differences in the source of input were examined by recording AMPA receptor-mediated, miniature EPSCs (mEPSCs) in whole-cell voltage-clamp mode from identified neurons. Bushy, octopus, and T-stellate cells of the ventral cochlear nucleus (VCN) and tuberculoventral cells of the dorsal cochlear nucleus (DCN) receive most of their excitatory input from the auditory nerve; fusiform cells receive excitatory inputs from both the auditory nerve and parallel fibers; cartwheel cells receive excitatory input from parallel fibers alone. mEPSCs from bushy, octopus, T-stellate, and tuberculoventral cells had significantly faster decay time constants (0.35-0.40 msec) than did those from fusiform and cartwheel cells (1.32-1.79 msec). Some fusiform cells had two populations of mEPSCs with distinct time courses. mEPSCs in cells with auditory nerve input alone were inhibited by philanthotoxin, a blocker of calcium-permeable AMPA receptors, whereas mEPSCs in cells with parallel fiber input were not. Thus AMPA receptors postsynaptic to the auditory nerve differ from those postsynaptic to parallel fibers both in channel-gating kinetics and in their permeability to calcium. These results confirm the conclusion that synaptic AMPA receptors are specialized according to the source of input (Hunter et al., 1993; Rubio and Wenthold, 1997; Wang et al., 1998).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei.

The composition of AMPA receptors in patches excised from somata and dendrites of six cell types in the mammalian cochlear nuclei was probed and compared electrophysiologically and pharmacologically with the rapid application of glutamate. Cells excited predominantly by auditory nerve fibers had AMPA receptors with exceptionally rapid gating (submillisecond deactivation and desensitization time...

متن کامل

Postnatal developmental alterations in the locus coeruleus neuronal fast excitatory postsynaptic currents mediated by ionotropic glutamate receptors of rat

Introduction: In the present work, spontaneous postsynaptic currents were assessed to investigate the postnatal development of excitatory postsynaptic currents in locus coeruleus neurons. Methods: In this study, AMPA and NMDA receptor-mediated spontaneous synaptic currents in the neurons of locus coeruleus were assessed using whole cell voltage-clamp recording during the first three weeks. ...

متن کامل

Characterization of spontaneous network-driven synaptic activity in rat hippocampal slice cultures

A particular characteristic of the neonatal hippocampus is the presence of spontaneous network-driven oscillatory events, the so-called giant depolarizing potentials (GDPs). GDPs depend on the interplay between GABA and glutamate. Early in development, GABA, acting on GABAA receptors, depolarizes neuronal membranes via a Cl- efflux. Glutamate, via AMPA receptors, generates a positive feedback n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 20  شماره 

صفحات  -

تاریخ انتشار 1999